Multi-soliton solutions of the two-dimensional matrix Davey-Stewartson equation
نویسندگان
چکیده
منابع مشابه
Periodic Soliton Solutions to the Davey–Stewartson Equation
The periodic soliton resonances and recurrent wave solutions to the Davey–Stewartson equation are presented. The solutions that described the interaction between a y-periodic soliton and a line soliton are analyzed to show the existence of the soliton resonances. The various recurrent solutions (The growing-and-decaying mode, breather and rational growing-anddecaying mode solutions) are present...
متن کاملFinite-dimensional integrable systems associated with Davey-Stewartson I equation
For the Davey-Stewartson I equation, which is an integrable equation in 1+2 dimensions, we have already found its Lax pair in 1+1 dimensional form by nonlinear constraints. This paper deals with the second nonlinearization of this 1+1 dimensional system to get three 1+0 dimensional Hamiltonian systems with a constraint of Neumann type. The full set of involutive conserved integrals is obtained ...
متن کاملDavey-Stewartson Equation with Fractional Coordinate Derivatives
We have used the homotopy analysis method (HAM) to obtain solution of Davey-Stewartson equations of fractional order. The fractional derivative is described in the Caputo sense. The results obtained by this method have been compared with the exact solutions. Stability and convergence of the proposed approach is investigated. The effects of fractional derivatives for the systems under considerat...
متن کاملMulti-soliton of the (2+1)-dimensional Calogero-Bogoyavlenskii-Schiff equation and KdV equation
A direct rational exponential scheme is offered to construct exact multi-soliton solutions of nonlinear partial differential equation. We have considered the Calogero–Bogoyavlenskii–Schiff equation and KdV equation as two concrete examples to show efficiency of the method. As a result, one wave, two wave and three wave soliton solutions are obtained. Corresponding potential energy of the solito...
متن کاملDynamics of rogue waves in the Davey–Stewartson II equation
General rogue waves in the Davey–Stewartson (DS)II equation are derived by the bilinear method, and the solutions are given through determinants. It is shown that the simplest (fundamental) rogue waves are line rogue waves which arise from the constant background in a line profile and then retreat back to the constant background again. It is also shown that multi-rogue waves describe the intera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nuclear Physics B
سال: 1997
ISSN: 0550-3213
DOI: 10.1016/s0550-3213(97)00264-2